This list comes from Marc Brysbaert’s website https://crr.ugent.be which is down for the moment for security reasons.
I’ve updated the links to the articles so that they work as well as possible.
However, I haven’t updated the links to the data (sometimes the old ones work and sometimes you have to go and find the download address in the article).
If you can provide me with a list of links to the datasets for the various resources, I’ll update the site with the correct urls for the datas.
Adyghe
- Zdorova et al. (2023)
- Eye movement corpus
- 100 sentences (625 words)
- Data
Chinese
- Liu et al. (2007)
- Word naming
- Visual presentation
- 2,423 single character words
- Data (Word features and Naming latencies in txt or excl).
- Sze et al. (2014)
- Lexical decision
- Visual presentation
- 2,500 single character words
- Data
- Lee et al. (2015)
- Lexical decision
- Visual presentation
- 3,423 single character words
- Data
- Chang et al. (2016)
- Word naming
- Visual presentation
- 3,314 single character words
- Data
- Tse et al. (2017)
- Lexical decision
- Visual presentation (Chinese Lexicon Project)
- 25,286 words
- Data
- Tsang et al. (2018)
- Lexical decision
- Visual presentation
- 12,578 words
- Data
- Wang et al. (2019)
- Writing spoken words
- 1,600 characters
- Data
- Pan et al. (2021)
- Sentence reading (eye movements)
- 1685 word tokens
- Data
- Li et al. (2022)
- Listening comprehension
- fMRI
- 90+ min novel (Le Petit Prince)
- data
- Sui et al. (2022)
- Text reading (eye movements of novel)
- Visual presentation (GECO)
- 5053 word types
- data
- Zhang et al. (2022)
- Sentence reading (eye movements)
- 8551 word types
- Data
- Tse et al. (2023)
- Naming
- Visual presentation (Chinese Lexicon Project II)
- 25,000+ words
- data
Danish
- Hollenstein et al. (2022)
- Eye movement corpus
- Visual presentation
- 5872 words (1832 sentences)
- data
Dutch
- Keuleers et al. (2010)
- Lexical decision
- Visual presentation
- 14,089 monosyllabic and disyllabic words
- Data
- Ernestus & Cutler (2015)
- Lexical decision
- Auditory presentation
- 2,780 words
- Data
- Brysbaert et al. (2016)
- Lexical decision
- Visual presentation
- 30,016 words (lemmas)
- Data
- Heyman et al. (2016)
- Speeded fragment completion
- Visual presentation
- 8,240 words (lemmas)
- Data
- Cop et al. (2017)
- Text reading (eye movement data)
- Visual presentation
- 5,575 words
- Data and word reading times
- Brysbaert et al. (2019)
- Word recognition times in Y/N vocabulary test (Dutch Crowdsourcing Project)
- Visual presentation
- 54,319 words
- Data
- Mak & Willems (2019)
- Story reading (eye movements)
- Visual presentation
- 7,200 word tokens (three narrative texts)
- Data
- Siegelman et al. (2022)
- Eye movement data of students reading short texts (MECO)
- Visual presentation
- 2000 word tokens
- Data
- Frank & Aumeistere (2023)
- Eye movements and EEG of students reading sentences (RaCCooNS)
- Visual presentation
- 2783 word tokens (1015 word types)
- Data
English
- Seidenberg & Waters (1989)
- Word naming
- Visual presentation
- 2,900 monosyllabic words
- Data
- Treiman et al. (1995)
- Word naming
- Visual presentation
- 1,327 monosyllabic words
- Data
- Spieler & Balota (1997) + Balota & Spieler (1998)
- Word naming (young and old people)
- Visual presentation
- 2,428 monosyllabic words
- Data (Trial data or word means)
- Kessler et al. (2002)
- Word naming
- Visual presentation
- 3,688 monosyllabic words
- Data
- Chateau & Jared (2003)
- Word naming
- Visual presentation
- 1,000 disyllabic words
- Data
- Balota et al. (2004)
- Lexical decision (young and old people)
- Visual presentation
- 2,428 monosyllabic words
- Data (Trial level or item means)
- Pynte & Kennedy (2007)
- Text reading (eye movements, Dundee corpus)
- Visual presentation
- 9,776 words
- Data
- Balota et al. (2007)
- Lexical decision and Word naming
- Visual presentation
- 40,481 words
- Data
- Lemhöfer et al. (2008)
- Progressive demasking (in L1 and L2)
- Visual presentation
- 1,025 words
- Data
- Cortese et al. (2010)
- Recognition memory
- Visual presentation
- 2,578 monosyllabic words
- Data
- Keuleers et al. (2010)
- Lexical decision
- Visual presentation
- 28,730 monosyllabic and disyllabic words
- Data
- Pritchard et al. (2012)
- Non-word naming
- Visual presentation
- 1,475 monosyllabic nonwords
- Data
- Adelman et al. (2013)
- Word naming
- Visual presentation
- 2,820 monosyllabic words
- Data
- Cohen-Shikora et al. (2013)
- Past tense generation of verbs
- Visual presentation
- 2,200 verbs
- Data
- Frank et al. (2013)
- Sentence reading (eye movements and self-paced reading)
- Visual presentation
- 1,524 words
- Data
- Hutchison et al. (2013)
- Lexical decision and word naming
- Visual presentation (with semantic primes)
- 1,661 words
- Data
- Smith & Levy (2013)
- Self-paced reading (Brown SPR corpus)
- Visual presentation
- 450 sentences, 7,188 words
- Data
- Adelman et al. (2014a)
- Lexical decision (1,000 participants)
- Visual presentation (with orthographic primes)
- 420 words
- Data
- Adelman et al. (2014b)
- Word naming (100 participants)
- Visual presentation
- 592 monosyllabic words
- Data
- Cortese et al. (2015a)
- Word naming (beginning v. end of block)
- Visual presentation
- 2,614 monosyllabic words
- Data
- Cortese et al. (2015b)
- Recognition memory
- Visual presentation
- 2,897 disyllabic words
- Data
- Dufau et al. (2015)
- Go / no-go task (EEG measurement)
- Visual presentation
- 960 nouns
- Data
- Frank et al. (2015)
- Sentence reading (EEG measurement)
- Visual presentation
- 1,524 words
- Rayner et al. (2015)
- Sentence reading (15 studies run at UCSD)
- Visual presentation
- 100s of sentences
- Data
- Goh et al. (2016)
- Lexical decision and semantic categorization
- Auditory presentation
- 468 words
- Data
- Brysbaert et al. (2017)
- Lexical decision (Dutch-English L2 participants)
- Visual presentation
- 420 words (same as Adelman et al., 2014a)
- Data
- Cop et al. (2017)
- Text reading (eye movements, L1 and L2)
- Visual presentation
- 5,012 words
- Data and word reading times
- Cortese et al. (2017)
- Word naming (manipulation of list difficulty)
- Visual presentation
- 2,500 monosyllabic words
- Data
- Dirix & Duyck (2017)
- Lexical decision (Dutch-English L2 participants)
- Visual presentation
- 800 words
- Data
- Mousikou et al. (2017)
- Non-word naming
- Visual presentation
- 915 disyllabic nonwords
- Data
- Pexman et al. (2017)
- Semantic decision
- Visual presentation
- 10,000 words (lemmas)
- Data
- Futrell et al. (2018)
- Self-paced text reading
- Visual presentation
- 2,332 words
- Data
- Hollenstein et al. (2018)
- Eye movements for text reading (ZuCo)
- Visual presentation
- 21,629 words
- Data
- Lau et al. (2018)
- Free recall and word recognition
- Visual presentation
- 532 words
- Data
- Luke & Christianson (2018)
- Text reading (eye movements; ProVo)
- Visual presentation
- 1,197 words
- Data
- Cortese et al. (2018)
- Word naming (conditional)
- Visual presentation
- 2,145 monosyllabic words
- Data
- Winsler et al. (2018)
- Go / no-go (EEG measurement)
- Auditory presentation
- 960 words
- Hollenstein et al. (2019)
- Eye movements during sentence reading (ZuCo2)
- Visual presentation
- 349 sentences
- Data
- Tucker et al. (2019)
- Lexical decision
- Auditory presentation
- 26,793 words
- Data
- Liben-Nowell et al. (2019)
- Perceptual identification
- Auditory presentation
- 1,081 monosyllabic words
- Data
- Hsu et al. (2019)
- Sentence reading (eye movements and fMRI)
- Visual presentation
- 1,500 words (5 expository texts)
- Data
- Mandera et al. (2020)
- Word recognition times in Y/N vocabulary test (English Crowdsourcing Project)
- Visual presentation
- 61,851 words
- Summary data and raw data
- Goh et al. (2020)
- Lexical decision
- Auditory presentation
- 10,170 words
- Data
- Brysbaert et al. (2021)
- Word recognition times in Y/N vocabulary test (English Crowdsourcing Project)
- English as L2
- Visual presentation
- 61,851 words
- Data
- Peekbank (2021)
- Eye movement data of children reading words (repository)
- Visual presentation
- Unknown number of words
- Data
- Schmidtke et al. (2021)
- Eye movements in reading
- Visual presentation
- 931 compound words
- Data
- Siegelman et al. (2022)
- Eye movement data of students reading short texts (MECO)
- Visual presentation
- 2000 word tokens
- Data
- Kuperman et al. (2022)
- Eye movement data of L2 students reading short texts (MECO L2)
- Visual presentation
- 2000 word tokens
- Data
- Berzak et al. (2022)
- Eye movement data L1 and L2 participants
- Visual presentation
- various numbers of words
- Data
- Li et al. (2022)
- Listening comprehension
- fMRI
- 90+ min novel (Le Petit Prince)
- data
- Sui et al. (2022)
- Text reading Chinese L2 speakers (eye movements of novel)
- Visual presentation (GECO)
- 5053 word types
- data
- Boyce & Levy (2023)
- Reading short stories (maze task)
- Visual presentation
- Stories of Futrell et al. (2018)
- data
- Huang et al. (2023)
- Sentence reading (self-paced reading)
- Visual presentation
- 138 sentences, 2000 participants
- data
Estonian
- Siegelman et al. (2022)
- Eye movement data of students reading short texts (MECO)
- Visual presentation
- 2000 word tokens
- Data
Finnish
- Siegelman et al. (2022)
- Eye movement data of students reading short texts (MECO)
- Visual presentation
- 2000 word tokens
- Data
French
- Pynte & Kennedy (2007)
- Text reading (eye movements, Dundee corpus)
- Visual presentation
- 11,321 words
- Ferrand et al. (2010)
- Lexical decision
- Visual presentation
- 38,840 words
- Data
- Ferrand et al. (2011)
- Lexical decision, progressive demasking, and word naming
- Visual presentation
- 1,482 monosyllabic words
- Data
- Ferrand et al. (2018)
- Lexical decision
- Auditory and visual presentation
- 17,876 or 28,466 words
- Data
- Li et al. (2022)
- Listening comprehension
- fMRI
- 90+ min novel (Le Petit Prince)
- data
German
- Kliegl et al. (2006)
- Sentence reading (eye movements)
- Visual presentation
- About 1,000 word types
- Data
- Brysbaert et al. (2011)
- Lexical decision
- Visual presentation
- 2,152 compound words
- Data
- Schröter & Schroeder (2017)
- Lexical decision and word naming
- Visual presentation
- 1,152 words
- Data
- Jäger et al. (2021)
- Eye movements in text reading (Potsdam Textbook Corpus; PoTeC)
- Visual presentation
- Data
- Siegelman et al. (2022)
- Eye movement data of students reading short texts (MECO)
- Visual presentation
- 2000 word tokens
- Data
Greek
- Siegelman et al. (2022)
- Eye movement data of students reading short texts (MECO)
- Visual presentation
- 2000 word tokens
- Data
Hebrew
- Siegelman et al. (2022)
- Eye movement data of students reading short texts (MECO)
- Visual presentation
- 2000 word tokens
- Data
Hindi
- Husain et al. (2015)
- Sentence reading (eye movements)
- Visual presentation
- about 1,000 word types
- Data
Italian
- Siegelman et al. (2022)
- Eye movement data of students reading short texts (MECO)
- Visual presentation
- 2000 word tokens
- Data
Japanese
- Asahara et al. (2016)
- Eye movement data of students reading short texts
- Visual presentation
- 1600 word tokens
Korean
- Siew et al. (2021)
- Lexical decision
- Visual presentation
- 30,930 words
- Data
- Siegelman et al. (2022)
- Eye movement data of students reading short texts (MECO)
- Visual presentation
- 2000 word tokens
- Data
Malay
- Yap et al. (2010)
- Lexical decision
- Visual presentation
- 9,592 words
- Data
- Maziyah Mohamed et al. (2022)
- Lexical Decision
- Visual presentation
- 1,264 words
- Data
Norwegian
- Siegelman et al. (2022)
- Eye movement data of students reading short texts (MECO)
- Visual presentation
- 2000 word tokens
- Data
Persian
- Nemati et al. (2022)
- Lexical decision
- Visual presentation
- 1800 words
- Data
Portuguese
- Soares et al. (2019)
- Word naming and lexical decision
- Visual presentation
- 1,920 words
- Leal et al. (2022)
- Paragraph reading (eye movements)
- Visual presentation
- 2494 tokens (1237 types)
- Data
Russian
- Laurinavichyute et al. (2019)
- Sentence reading (eye movements)
- Visual presentation
- About 1,000 word types
- Data
- Siegelman et al. (2022)
- Eye movement data of students reading short texts (MECO)
- Visual presentation
- 2000 word tokens
- Data
- Zdorova et al. (2023)
- Eye movement corpus
- 100 sentences (1362 words)
- Data
Spanish
- Davies et al. (2013)
- Word naming
- Visual presentation
- 2,764 words
- Data
- González-Nosti et al. (2014)
- Lexical decision
- Visual presentation
- 2,765 words
- Data
- Aguasvivas et al. (2018)
- Word recognition (crowdsourcing)
- Visual presentation
- 45,389 words
- Data
- Kamienkowski et al. (2018)
- Eye movement data of participants reading short texts
- Visual presentation
- 33,120 word tokens
- Data
- Miguel-Abella et al. (2021)
- Word naming
- Visual presentation
- 4562 verbs
- Data (Word means or Trial data)
- Siegelman et al. (2022)
- Eye movement data of students reading short texts (MECO)
- Visual presentation
- 2000 word tokens
- Data
Turkish
- Siegelman et al. (2022)
- Eye movement data of students reading short texts (MECO)
- Visual presentation
- 2000 word tokens
- Data
References
Adelman, J. S., Marquis, S. J., Sabatos-DeVito, M. G., & Estes, Z. (2013). The unexplained nature of reading. Journal of Experimental Psychology: Learning, Memory, and Cognition, 39(4), 1037-1053.
Adelman, J. S., Johnson, R. L., McCormick, S. F., McKague, M., Kinoshita, S., Bowers, J. S., … & Scaltritti, M. (2014a). A behavioral database for masked form priming. Behavior Research Methods, 46(4), 1052-1067.
Adelman, J. S., Sabatos-DeVito, M. G., Marquis, S. J., & Estes, Z. (2014b). Individual differences in reading aloud: A mega-study, item effects, and some models. Cognitive psychology, 68, 113-160.
Aguasvivas, J., Carreiras, M., Brysbaert, M., Mandera, P., Keuleers, E., & Duñabeitia, J. A. (2018). SPALEX: A Spanish lexical decision database from a massive online data collection. Frontiers in Psychology, 9, 2156. doi: 10.3389/fpsyg.2018.02156.
Balota, D. A., Cortese, M. J., Sergent-Marshall, S. D., Spieler, D. H., & Yap, M. J. (2004). Visual word recognition of single-syllable words. Journal of Experimental Psychology: General, 133(2), 283-316.
Balota, D. A. & Spieler, D. H. (1998). The utility of item level analyses in model evaluation: A reply to Seidenberg & Plaut (1998). Psychological Science, 9(3), 238-240.
Balota, D. A., Yap, M. J., Hutchison, K. A., & Cortese, M. J. (2013). Megastudies: What do millions (or so) of trials tell us about lexical processing? In J. S. Adelman (Ed.), Visual Word Recognition Volume 1: Models and methods, orthography and phonology (pp. 90-115). New York, NY: Psychology Press.
Balota, D. A., Yap, M. J., Hutchison, K. A., Cortese, M. J., Kessler, B., Loftis, B., … & Treiman, R. (2007). The English lexicon project. Behavior Research Methods, 39(3), 445-459.
Berzak, Y., Nakamura, C., Smith, A., Weng, E., Katz, B., Flynn, S., & Levy, R. (2022). CELER: A 365-Participant Corpus of Eye Movements in L1 and L2 English Reading. Open Mind, 1-10. https://doi.org/10.1162/opmi_a_00054
Boyce, V., & Levy, R. P. (2023). A-maze of Natural Stories: Comprehension and surprisal in the Maze task. Glossa Psycholinguistics, 2(1): X, pp. 1–34. DOI: https://doi.org/10.5070/G6011190
Brysbaert, M., Buchmeier, M., Conrad, M., Jacobs, A.M., Bölte, J., & Böhl, A. (2011). The word frequency effect: A review of recent developments and implications for the choice of frequency estimates in German. Experimental Psychology, 58, 412-424.
Brysbaert, M., Keuleers, E. and Mandera, P., 2019. Recognition Times for 54 Thousand Dutch Words: Data from the Dutch Crowdsourcing Project. Psychologica Belgica, 59(1), pp.281–300. DOI: http://doi.org/10.5334/pb.491
Brysbaert, M., Keuleers, E., & Mandera, P. (2021). Which words do English non-native speakers know? New supernational levels based on yes/no decision. Second Language Research. https://doi.org/10.1177/0267658320934526.
Brysbaert, M., Lagrou, E., & Stevens, M. (2017). Visual word recognition in a second language: A test of the lexical entrenchment hypothesis with lexical decision times. Bilingualism: Language and Cognition, 20, 530-548.
Brysbaert, M., Stevens, M., Mandera, P., & Keuleers, E. (2016). The impact of word prevalence on lexical decision times: Evidence from the Dutch Lexicon Project 2. Journal of Experimental Psychology: Human Perception and Performance, 42, 441-458.
Chang, Y. N., Hsu, C. H., Tsai, J. L., Chen, C. L., & Lee, C. Y. (2016). A psycholinguistic database for traditional Chinese character naming. Behavior Research Methods, 48(1), 112-122.
Chateau, D., & Jared, D. (2003). Spelling–sound consistency effects in disyllabic word naming. Journal of Memory and Language, 48(2), 255-280.
Cohen-Shikora, E. R., Balota, D. A., Kapuria, A., & Yap, M. J. (2013). The past tense inflection project (PTIP): Speeded past tense inflections, imageability ratings, and past tense consistency measures for 2,200 verbs. Behavior research methods, 45(1), 151-159.
Cop, U., Dirix, N., Drieghe, D., & Duyck, W. (2017). Presenting GECO: An eyetracking corpus of monolingual and bilingual sentence reading. Behavior Research Methods, 49(2), 602-615.
Cortese, M.J., Hacker, S., Schock, J. & Santo, J.B. (2015a). Is reading aloud performance in megastudies systematically influenced by the list context? Quarterly Journal of Experimental Psychology, 68, 1711-1722. doi: 10.1080/17470218.2014.974624
Cortese, M.J., Khanna, M.M., & Hacker, S. (2010) Recognition memory for 2,578 monosyllabic words. Memory, 18, 595-609. DOI: 10.1080/09658211.2010.493892.
Cortese, M.J., Khanna, M.M., Kopp, R., Santo, J.B, Preston, K.S., & Van Zuiden, T. (2017). Participants shift response deadlines based on list difficulty during reading aloud megastudies, Memory & Cognition, 45, 589-599.
Cortese, M.J., McCarty D.P., & Schock, J. (2015b). A mega recognition memory study of 2,897 disyllabic words. Quarterly Journal of Experimental Psychology, 68, 1489-1501. doi: 10.1080/17470218.2014.945096
Cortese, M. J., Yates, M., Schock, J., & Vilks, L. (2018). Examining word processing via a megastudy of conditional reading aloud. Quarterly Journal of Experimental Psychology, 71(11), 2295-2313.
Davies, R., Barbón, A., & Cuetos, F. (2013). Lexical and semantic age-of-acquisition effects on word naming in Spanish. Memory & Cognition, 41(2), 297-311.
Dirix, N., & Duyck, W. (2017). The first-and second-language age of acquisition effect in first-and second-language book reading. Journal of Memory and Language, 97, 103-120.
Dufau, S., Grainger, J., Midgley, K. J., & Holcomb, P. J. (2015). A thousand words are worth a picture: Snapshots of printed-word processing in an event-related potential megastudy. Psychological Science, 26(12), 1887-1897.
Ernestus, M., & Cutler, A. (2015). BALDEY: A database of auditory lexical decisions. The Quarterly Journal of Experimental Psychology, 68(8), 1469-1488.
Ferrand, L., Brysbaert, M., Keuleers, E., New, B., Bonin, P., Meot, A., Augustinova, M., & Pallier, C. (2011). Comparing word processing times in naming, lexical decision, and progressive demasking: evidence from Chronolex. Frontiers in Psychology, 2:306. doi: 10.3389/fpsyg.2011.00306.
Ferrand, L., Méot, A., Spinelli, E., New, B., Pallier, C., Bonin, P., … & Grainger, J. (2018). MEGALEX: A megastudy of visual and auditory word recognition. Behavior Research Methods, 50(3), 1285-1307.
Ferrand, L., New, B., Brysbaert, M., Keuleers, E., Bonin, P., Meot, A., Augustinova, M., & Pallier, C. (2010). The French Lexicon Project: Lexical decision data for 38,840 French words and 38,840 pseudowords. Behavior Research Methods, 42, 488-496.
Frank, S. L., & Aumeistere, A. (2023). An eye-tracking-with-EEG coregistration corpus of narrative sentences. Language Resources and Evaluation.
Frank, S. L., Monsalve, I. F., Thompson, R. L., & Vigliocco, G. (2013). Reading time data for evaluating broad-coverage models of English sentence processing. Behavior Research Methods, 45(4), 1182-1190.
Frank, S. L., Otten, L. J., Galli, G., & Vigliocco, G. (2015). The ERP response to the amount of information conveyed by words in sentences. Brain and language, 140, 1-11.
Futrell, R., Gibson, E., Tily, H. J., Blank, I., Vishnevetsky, A., Piantadosi, S. T., & Fedorenko, E. (2018) The Natural Stories Corpus. In Proceedings of LREC 2018, Eleventh International Conference on Language Resources and Evaluation (pp. 76—82). Miyazaki, Japan.
Goh, W. D., Yap, M. J., Lau, M. C., Ng, M. M., & Tan, L. C. (2016). Semantic richness effects in spoken word recognition: A lexical decision and semantic categorization megastudy. Frontiers in psychology, 7, 976.
Goh, W.D., Yap, M.J., & Chee, Q.W. (2020). The Auditory English Lexicon Project: A multi-talker, multi-region psycholinguistic database of 10,170 spoken words and nonwords. Behavior Resesearch Methods. https://doi.org/10.3758/s13428-020-01352-0
González-Nosti, M., Barbón, A., Rodríguez-Ferreiro, J., & Cuetos, F. (2014). Effects of the psycholinguistic variables on the lexical decision task in Spanish: A study with 2,765 words. Behavior Research Methods, 46(2), 517-525.
Heyman, T., Van Akeren, L., Hutchison, K. A., & Storms, G. (2016). Filling the gaps: A speeded word fragment completion megastudy. Behavior Research Methods, 48(4), 1508-1527.
Hollenstein, N., Barrett, M., & Björnsdóttir, M. (2022). The Copenhagen Corpus of Eye Tracking Recordings from Natural Reading of Danish Texts. arXiv preprint arXiv:2204.13311.
Hollenstein, N., Rotsztejn, J., Troendle, M., Pedroni, A., Zhang, C., & Langer, N. (2018). ZuCo, a simultaneous EEG and eye-tracking resource for natural sentence reading. Scientific data, 5(1), 1-13.
Hollenstein, N., Troendle, M., Zhang, C., & Langer, N. (2019). ZuCo 2.0: A dataset of physiological recordings during natural reading and annotation. arXiv preprint arXiv:1912.00903.
Hsu, C.R., Clariana, R., Schloss, B., & Li, P. (2019). Neurocognitive Signatures of Naturalistic Reading of Scientific Texts: A Fixation-Related fMRI Study. Scientific Reports, 9, 10678.
Huang, K., Arehalli, S., Kugemoto, M., Muxica, C., Prasad, G., Dillon, B., & Linzen, T. (2023, April 21). Surprisal does not explain syntactic disambiguation difficulty: evidence from a large-scale benchmark. https://doi.org/10.31234/osf.io/z38u6
Husain, S., Vasishth, S., and Srinivasan, N. (2014). Integration and prediction difficulty in Hindi sentence comprehension: Evidence from an eye-tracking corpus. Journal of Eye Movement Research, 8(2), 1-12.
Hutchison, K. A., Balota, D. A., Neely, J. H., Cortese, M. J., Cohen-Shikora, E. R., Tse, C. S., … & Buchanan, E. (2013). The semantic priming project. Behavior Research Methods, 45(4), 1099-1114.
Jäger, L., Kern, T., & Haller, P. (2021). Potsdam Textbook Corpus (PoTeC): Eye tracking data from experts and non-experts reading scientific texts. available on OSF.
Kamienkowski, J. E., Carbajal, M. J., Bianchi, B., Sigman, M., & Shalom, D. E. (2018). Cumulative repetition effects across multiple readings of a word: Evidence from eye movements. Discourse Processes, 55(3), 256-271.
Kessler, B., Treiman, R., & Mullennix, J. (2002). Phonetic biases in voice key response time measurements. Journal of Memory and Language, 47, 145-171.
Keuleers, E & Balota, D.A. (2015) Megastudies, crowd-sourcing, and large datasets in psycholinguistics: An overview of recent developments, The Quarterly Journal of Experimental Psychology. 68, (8) 1457-1468.
Keuleers, E., Diependaele, K. & Brysbaert, M. (2010). Practice effects in large-scale visual word recognition studies: A lexical decision study on 14,000 Dutch mono- and disyllabic words and nonwords. Frontiers in Psychology 1:174. doi: 10.3389/fpsyg.2010.00174.
Keuleers, E., Lacey, P., Rastle, K., & Brysbaert, M. (2012). The British Lexicon Project: Lexical decision data for 28,730 monosyllabic and disyllabic English words. Behavior Research Methods, 44, 287-304.
Kuperman, V., Siegelman, N., Schroeder, S., Acartürk, C., Alexeeva, S., Amenta, S., … & Usal, K. A. (2022). Text reading in English as a second language: Evidence from the Multilingual Eye-Movements Corpus. Studies in Second Language Acquisition, 1-35.
Lau, M. C., Goh, W. D., & Yap, M. J. (2018). An item-level analysis of lexical-semantic effects in free recall and recognition memory using the megastudy approach. Quarterly Journal of Experimental Psychology, 71, 2207-2222.
Laurinavichyute, A. K., Sekerina, I. A., Alexeeva, S., Bagdasaryan, K., & Kliegl, R. (2019). Russian Sentence Corpus: Benchmark measures of eye movements in reading in Russian. Behavior Research Methods.
Leal, S. E., Lukasova, K., Carthery-Goulart, M. T., & Aluísio, S. M. (2022). RastrOS Project: Natural Language Processing contributions to the development of an eye-tracking corpus with predictability norms for Brazilian Portuguese. Language Resources and Evaluation, 1-40.
Lee, C. Y., Hsu, C. H., Chang, Y. N., Chen, W. F., & Chao, P. C. (2015). The feedback consistency effect in Chinese character recognition: Evidence from a psycholinguistic norm. Language and Linguistics, 16(4), 535-554.
Lemhöfer, K., Dijkstra, T., Schriefers, H., Baayen, R. H., Grainger, J., & Zwitserlood, P. (2008). Native language influences on word recognition in a second language: A megastudy. Journal of Experimental Psychology: Learning, Memory, and Cognition, 34(1), 12-31.
Li, J., Bhattasali, S., Zhang, S., Franzluebbers, B., Luh, W. M., Spreng, R. N., … & Hale, J. (2022). Le Petit Prince multilingual naturalistic fMRI corpus. Scientific Data, 9(1), 1-15.
Liben-Nowell, D., Strand, J., Sharp, A., Wexler, T., & Woods, K. (2019). The Danger of Testing by Selecting Controlled Subsets, with Applications to Spoken-Word Recognition. Journal of Cognition, 2(1), 2. DOI: http://doi.org/10.5334/joc.51
Liu, Y., Shu, H., & Li, P. (2007). Word naming and psycholinguistic norms: Chinese. Behavior Research Methods, 39(2), 192-198.
Luke, S. G., & Christianson, K. (2018). The Provo Corpus: A large eye-tracking corpus with predictability norms. Behavior Research Methods, 50(2), 826-833.
Mak, M., & Willems, R. M. (2019). Mental simulation during literary reading: Individual differences revealed with eye-tracking. Language, Cognition and Neuroscience, 34(4), 511-535.
Mandera, P., Keuleers, E., & Brysbaert, M. (2020). Recognition times for 62 thousand English words: Data from the English Crowdsourcing Project. Behavior Research Methods, 52, 741–760. https://doi.org/10.3758/s13428-019-01272-8
Maziyah Mohamed, M., Yap, M.J., Chee, Q.W. & Jared, D. (2022). Malay Lexicon Project 2: Morphology in Malay word recognition. Memory & Cognition. https://doi.org/10.3758/s13421-022-01337-8
Miguel-Abella, R.S., Pérez-Sánchez, M.Á., Cuetos, F. et al. (2121). SpaVerb-WN—A megastudy of naming times for 4562 Spanish verbs: Effects of psycholinguistic and motor content variables. Behavior Research Methods. https://doi.org/10.3758/s13428-021-01734-y
Mousikou, P., Sadat, J., Lucas, R., & Rastle, K. (2017). Moving beyond the monosyllable in models of skilled reading: Mega-study of disyllabic nonword reading. Journal of Memory and Language, 93, 169-192.
Nemati, F., Westbury, C., Hollis, G. et al. The Persian Lexicon Project: minimized orthographic neighbourhood effects in a dense language. J Psycholinguist Res (2022). https://doi.org/10.1007/s10936-022-09863-x
Pan, J., Yan, M., Richter, E. M., Shu, H., & Kliegl, R. (2021). The Beijing Sentence Corpus: A Chinese sentence corpus with eye movement data and predictability norms. Behavior Research Methods. https://doi.org/10.3758/s13428-021-01730-2
Pexman, P. M., Heard, A., Lloyd, E., & Yap, M. J. (2017). The Calgary semantic decision project: concrete/abstract decision data for 10,000 English words. Behavior Research Methods, 49(2), 407-417.
Pritchard, S. C., Coltheart, M., Palethorpe, S., & Castles, A. (2012). Nonword reading: Comparing dual-route cascaded and connectionist dual-process models with human data. Journal of Experimental Psychology: Human Perception and Performance, 38(5), 1268.
Pynte, J., & Kennedy, A. (2006). An influence over eye movements in reading exerted from beyond the level of the word: Evidence from reading English and French. Vision Research, 46(22), 3786-3801.
Rayner, Keith; Abbott, Matthew J; Schotter, Elizabeth R; Belanger, Nathalie N; Higgins, Emily C; Leinenger, Mallorie; von der Malsburg, Titus; Plummer, Patrick (2015): Keith Rayner Eye Movements in Reading Data Collection. UC San Diego Library Digital Collections. http://dx.doi.org/10.6075/J0JW8BSV
Schmidtke, D., Van Dyke, J. A., & Kuperman, V. (2021). CompLex: An eye-movement database of compound word reading in English. Behavior Research Methods, 53, 59-77. pdf
Schröter, P., & Schroeder, S. (2017). The Developmental Lexicon Project: A behavioral database to investigate visual word recognition across the lifespan. Behavior Research Methods, 49(6), 2183-2203.
Seidenberg, M.S., & Waters, G.S. (1989). Word recognition and naming: A mega study. Bulletin of the Psychonomic Society, 27, 489.
Siegelman, N., Schroeder, S., Acartürk, C. et al. Expanding horizons of cross-linguistic research on reading: The Multilingual Eye-movement Corpus (MECO). Behav Res (2022). https://doi.org/10.3758/s13428-021-01772-6
Siew, C. S., Yi, K., & Lee, C. H. (2021). Syllable and letter similarity effects in Korean: Insights from the Korean Lexicon Project. Journal of Memory and Language, 116, 104170.
Smith, N. J., & Levy, R. (2013). The effect of word predictability on reading time is logarithmic. Cognition, 128(3), 302-319.
Spieler D. H., & Balota, D. A. (1997). Bringing computational models of word naming down to the item level. Psychological Science, 8(6), 411-416.
Sui, L., Dirix, N., Woumans, E., & Duyck, W. (2022). GECO-CN: Ghent Eye-tracking COrpus of sentence reading for Chinese-English bilinguals. Behavior Research Methods, 1-21.
Sze, W. P., Liow, S. J. R., & Yap, M. J. (2014). The Chinese Lexicon Project: A repository of lexical decision behavioral responses for 2,500 Chinese characters. Behavior Research Methods, 46(1), 263-273.
Treiman, R., Mullennix, J., Bijeljac-Babic, R., & Richmond-Welty, E. D. (1995). The special role of rimes in the description, use, and acquisition of English orthography. Journal of Experimental Psychology: General, 124, 107-136.
Tsang, Y. K., Huang, J., Lui, M., Xue, M., Chan, Y. W. F., Wang, S., & Chen, H. C. (2018). MELD-SCH: A megastudy of lexical decision in simplified Chinese. Behavior Research Methods, 50(5), 1763-1777.
Tse, C. S., Yap, M. J., Chan, Y. L., Sze, W. P., Shaoul, C., & Lin, D. (2017). The Chinese Lexicon Project: A megastudy of lexical decision performance for 25,000+ traditional Chinese two-character compound words. Behavior Research Methods, 49(4), 1503-1519.
Tse, C. S., Chan, Y. L., Yap, M. J., & Tsang, H. C. (2023). The Chinese Lexicon Project II: A megastudy of speeded naming performance for 25,000+ traditional Chinese two-character words. Behavior Research Methods.
Tucker, B. V., Brenner, D., Danielson, D. K., Kelley, M. C., Nenadić, F., & Sims, M. (2019). The Massive Auditory Lexical Decision (MALD) database. Behavior Research Methods.
Winsler, K., Midgley, K. J., Grainger, J., & Holcomb, P. J. (2018). An electrophysiological megastudy of spoken word recognition. Language, Cognition and Neuroscience, 1-20.
Yap, M. J., Liow, S. J. R., Jalil, S. B., & Faizal, S. S. B. (2010). The Malay Lexicon Project: A database of lexical statistics for 9,592 words. Behavior Research Methods, 42(4), 992-1003.
Zdorova, N., Parshina, O., Ogly, B., Bagirokova, I., Krasikova, E., Ziubanova, A., … & Dragoy, O. (2023). Eye movement corpora in Adyghe and Russian: an eye-tracking study of sentence reading in bilinguals. Frontiers in Psychology, 14, 1212701.
Zettersten, M., Bergey, C. A., Bhatt, N., Boyce, V., Braginsky, M., Carstensen, A., deMayo, B., Kachergis, G., Lewis, M., Long, B., MacDonald, K., Mankewitz, J., Meylan, S. C., Saleh, A. N., Schneider, R. M., Tsui, A., Uner, S., Xu, T. L., Yurovsky, D., & Frank, M.C. (2021). Peekbank: Exploring children’s word recognition through an open, large-scale repository for developmental eye-tracking data. Proceedings of the 43rd Annual Conference of the Cognitive Science Society.
Zhang, G., Yao, P., Ma, G., Wang, J., Zhou, J., Huang, L., … & Li, X. (2022) The database of eye-movement measures on words in Chinese reading. Nature Scientific Data, 9:411.